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INTRODUCTION TO MOLECULAR RADIO
ASTRONOMY FROM MILLIMETER TO
SUBMILLIMETER AND FAR INFRARED

Molecular Spectroscopy

What are the mechanisms
of emitting spectral lines

for molecules? Which kind
of transitions are allowed?




Or how to shock our students

Hot Molecular Cores




Ground Based observations of high

Mass star forming regions
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Ethyl Cyanide (The Contaminator), CH;CH,CN
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Collaboration with L. Margules, I. Kleiner
etal. 2

More than 800 lines from the isotopes
of CH,CH,CN

Around 600 lines from the vibrational
excited states of ethyl cyanide

More than 400 lines from those of
CH,;OCOH

Around 800-1000 lines identified every
2 years in Orion. All lines above

confusion limit could be identified
around 2020

Belen started her PhD based on
this line survey in 2006.

When combined with HEXOS data=>
Work for a long period

ALMA ?




Line frequencies: public and private
catalogs




Formation of molecules and

molecular stability




The first hipothesis has to be stablished from analogy with atoms :

Each electron in a molecule must be described by a wave function
which provides the electronic density probability around the
nuclei




The main difference between atoms and molecules is that
In atoms electrons are submitted to a central potential while
In molecules the electrons are submitted to a potential
arising from all nuclei, i.e., each electron moves under

the action of all nuclei.

The goal of molecular physics is to find the wave function
for each electron in the molecule and obviously

the different energy levels of the molecule (rotation,
vibration, and electronic levels).

represents the density of electronic cloud in each point
around the nuclei. Very sofisticated methods have to be
used to obtain the energy levels with the accuracy required
in molecular spectroscopy (Earth or Space)




1) Each molecular orbital will contain two electrons with
opposite spins.

2) In the ground state electrons start to fill orbitals from the
lowest energy to the highest levels

3) In the ground state and in the simplest approximation the
electronic energy is obtained by addind the energies of the
individual electrons (no interaction at all between
electrons).

4) The wave function is the product of the mono-electronic
wave funtions.




Let H, and Hg be two atoms of hydrogen and let ./, and
the wave functions of the electron in atoms H, and Hg when
both atoms are far away.

Obviously these wave functions do not represent the elec-
trons when the two atoms are very close and forming, per-
haps, molecular hydrogen.

However, the electron of atom H, when H, is far from Hg will
be reasonably well represented by 1/, and when the same
electron is close to atom Hg by




It is reasonable to think that the wave function describing
the electrons in the molecule of hydrogen can be given by

The square of /. represents the contribution of each atomic
orbital to the molecular orbital. In the case of H, it is ob-
vious that and

Hence, these very simple hypothesis let us to the following
conclusions :

A) There are two possible states with different electronic
energy. If the energy of the electrons 1s in the hydrogen
atoms is E,, then one of these two levels will have energy
E, < E; and the other will have an energy E_ > E,.




B) The molecular orbital

will have the energy E, while the molecular orbital

will have the energy E.

C) The ground state of the molecule is obtained when two
electrons are placed in the orbital E,. Obviously, both elec-

trons should have opposite spins.

D) The orbital E. may be partially or fully used by the elec-
trons. The associated states correspond to the excited
states of the molecule.




E) The electronic energy of the molecule, in this simple
approximation, is the sum of the indivual energies of the

electrons. In the ground state is, hence, 2E..

F) The wave function of the system, © , is the product of
the individual wave functions of the electrons (1 y 2)

F) The dependency of the electronic energy of the system
as a function of the internuclear distance will have the follo-

wing shape




The function correspondind to the orbital has a very

well defined minimum for r = 0.85 A (experimental = 0.74 A !!!)
and the bondind energy is 2.7 eV (experimental 4.7 eV !1],

the interaction between electrons has not been considered;
also the fact that two protons interact with each electron has
to be included).

The orbital '/ shows a continuum increase of energy when
the distance between the atoms decreases. It is an unbound
state. The electronic density probability in both orbitals

and 'V Is given by

The electronic isodensity contours have the following shape




In W, the electronic density has a maximum between the
protons while in ¥_the electronic density is concentrated
around each proton.

.......




The dependency of the electronic energy of the system
as a function of the internuclear distance has the
following shape:

(values excluding the interaction
between electrons and the fact
that the two protons interact with
the electrons)

Experimental values:

0.74 Aand 4.7 eV




IMPORTANT:

When two H atoms collide they have some extra
kinetic energy

H, cannot be formed
in gas phase in the ISM !!!

3-body collisions

rap are required
(3rd body will carry out
the excess of energy)
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Fic. 200. Potential Curves of the Observed Electronic States of the CN Molecule. The
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Once a molecule is formed...




ONCE A MOLECULE IS FORMED THE INTERNAL
ENERGY IS HIGHLY DIVERSIFIED

Electronic: Energy of the electronic orbitals

Vibrational: Energy of the vibrations of the nuclei
around the equilibrium position

Rotational: Energy associated to the rotation of

an electric dipole.

Other: unpaired electron spins or nuclear spins
can couple with the angular momentum of the
electric dipole rotation. Internal magnetic dipoles
can couple with external magnetic fields, etc...




There Is a hierarchy in the
energies needed for transitions

Energy, Frequency (E=hv)
— s

Wavelength (A=c/v)
T

Molecular Transitions

Rotational Vibrational Electronic

The quantum mechanical problem is relatively
simple only for very small molecules.




Electromagnetic Spectrum

Type of Radiation Frequency Range (Hz) Wavelength Range

gamma-rays 10°%_10%* <1 pm

X-rays 1017_10% | nm-1 pm
ultraviolet 10-10Y 400 nm-1 nm
visible 4-7 5101 750 nm-400 nm

near-mfrared 1x10*_4x101 2.5 pm-750 nm

mfrared 103,101 25 pm-2.5 pum

I mm-25 pm

microwaves 3x10 1 1- 10 13

radio waves “3x10™ =] mm

Type of Transition

nuclear

mner electron

outer electron

outer electron

outer electron molecular vibrations

molecular vibrations

'3

molecular rotations, electron spm flips’

nuclear spin flips™

The Visible Spectrum

infrared

light

| | I
700 500

Wavelength (nm)
© 1995 CHP

ultraviolet
light
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How to characterize molecules
spectroscopically from astronomical data?

Looking for species difficult to be produced in the laboratory
We proceed exactely in the same way than in the laboratory

We identify the lines that we believe are produced by a
molecular species (harmonic relations between the
frequencies for linear molecules for example)

We assigh quantum numbers to these lines
We check for hyperfine structure (N, H, 70, 33S,...)
We fit a Hamiltonian to the observed lines

What accuracy can be obtained ?



Frequency accuracy

Normally lines are gaussians with linewidths in dark
clouds <0.5 km/s which means an accuracy in
velocity determination of 0.05 km/s.

This velocity accuracy corresponds to a relative
frequency uncertainty of 1.7 10/

In some sources the linewidths can be as narrow as
0.15 km/s.

Additional uncertainty due to precision on the
velocity of the source (0.2 km/s or 6.7 10”7 relative
frequency error)



ROTATIONAL SPECTRUM OF LINEAR
MOLECULES (basic concepts)

From a “classical” point of view of quantum theory a molecule
has a rotational energy proportional to the square of the angular
momentum, J2. Hence the energy levels should have a dependency
on J given by

E(J) o< J(J+1)
The frequencies of the transitions (allowed transitions have
AJ=%£1) could be given by

v(J=>J-1) < J
From a classical point of view the angular momentum of the mole-
cule is given by 1w, where I is the momentum of inertia of the mole-
cule,

I=pnr?

where p is the reduced mass, u =M, M,/(M;+M,), and r is the
separation between the nuclei.




In this “classical” approximation for the energy of a rigid molecule
the energies can be written as

Center

EJ) =B JJ+1)

and the frequencies as

v=2BJ,

The constant B, the rotational constant, [ = mjmzR = pRz

is given by mjp + ma

B =(h/8x*1) [frequency units]
lem1=29979.2459 MHz =~ 30 GHz =~ 1.4388 K

The heavier the molecule, the smaller B; the rotational
spectrum will be tighter.
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This simple expresion for the energy works fine for heavy molecules.
However, when the accuracy of the observations is large it is obser-
ved that the frequencies of succesive rotational transitions do not
follow this simple approximation.

Because when molecules are rotating the nuclei are submitted to

centrifugal forces which increase the distance between them and
increase the momentum of inertia.

The distance between the nuclei is defined by the molecular orbitals.
We need a potential U(r) describing the energy of the system as
a function of the internuclear distance.




As the movement of the nuclei is much slower than those of the
electrons we could consider that the electronic energy of the
molecule is indepent of the vibration and of the rotation.

This approximation (Born-Oppenheimer) allows to separate
the total energy into electronic, vibrational and rotational
energies, i.e., the total energy of the molecule could be written

as a sum of terms depending on (m/My)” .

The problem is to find the potential energy of the molecules, U( r ),
describing in a reasonable way the variation of energy as a
function of the internuclear distance.




The empirical expression used in spectroscopy to fit the ro-
vibrational spectra of diatomic molecules is

For = wlv + 3) — 0Zv + 5) + wg.(v + 3)* + w2lr + 3)*
+ B, J(J + 1) — DJAJ + 1> + H I3 + 1) + - - -

B, = Be — as(v+3) +vv +3)° . ..

From the spectroscopic constants it is possible to derive impor-
tant information, through the Morse or Dunham expression

for the potential energy, on the dissociation energy, equilibrium
distance, etc.




The spectra of diatomic molecules




Potential Surfaces
As the movement of the nuclei is much slower than those of the

electrons we could consider that the electronic energy of the
molecule is independent of the vibration and rotation.

(Born-Oppenheimer approximation)

Problem: finding the potential

energy of the molecule, U( r),
describing in a reasonable way
the variation of energy as a
function of the internuclear

0

Ulr)

distance for a given electronic
state. The solution of the
Schrodinger equation will
depend on this potential.




Morse Potential : U/ (1) = D(1 — ¢—e{r—)?2

dissociation energy of the molecule
equilibrium distance between nuclel
a constant

The wave equation is then:

éig + [_ J(J + ].) + 811’2].1. (W — D — De—2a(r—ro + 2De—a('r—r¢))]s = ()

h

7.2
Making the following changes:

h?.

y = e—atr=r and A=JJ +1) St




We obtain :

dy* " ydy 'k’

— 2
d’S | 1dS | 8% (W D 2D Are)Szo

y2 Y : y2r2 '

ForA=0,i.e., J=0itis possible to find an analitycal
solution. In the general case the solution is given by:

Harmonic h it
oscillator ~ @nharmhonicity Centrifugal distortion

f \ N
= lwo(v + 1) ~ zwe(e + 2 +|J(T + DB|~ |[DJ2T + 1)2

Vibratic;{lal terms U"diSt”rbe/d g A %)i(J + D

rotation

W s
h

Higher order corrections

_a 3D _he o _
We = 27'_»\{ u 8_41—) 6_87'-218
a b
D, - h 4B3

1281r;.zw 26 B w?

3h%w, _ ) ; fr,.B* 612
b S 7R 2urtD a2/




There is another potential proposed by Dunham.
It is represented by a series in (r-r.), wherer, is
the equilibrium distance

U = aof¥(1 + a:f + ai? + - - ) + BJ(J + 1)(1 — 2¢ + 382 — 4§

Where § =(r-r,)/r, and B, =h/8x’ur, >

The solution can be given as

(v + V(T + 1)¢

Where the terms Y, are the Dunham coefficients




IN SUMMARY: The empirical expression used in spectroscopy
to fit the ro-vibrational spectra of diatomic molecules is

Fv.f — we(v . %) = wcxc(i"’ + é’)? + wcye(v + %)3 + &4‘336(3 + %)4
B 1) DI Dy HI + 1P -

B, =B, —av+ 35 + 1.+ ...

INVERSE PROBLEM: From spectroscopic measurements it
Is possible to fit spectroscopic constants and from them it
is possible to derive important information, through the
Morse or Dunham expression for the potential energy, on
the dissociation energy, equilibrium distance, etc.

This is the main subject of papers in journals such as the
Journal of Molecular Spectroscopy or the Journal of Molecular Structure




For simple molecules we can separate
the vibrational and rotational parts of the
wave function as another Born-
Oppenheimer aproximation...




The Simple Harmonic Oscillator

Lecture # 2

We next consider the vibrational modes of a diatomic molecule. There
are a number of different models, which describe the vibrational
motion of a diatomic molecule. We shall consider firstly the simplest
model and later consider more sophisticated and more accurate
models. The smmplest 1s the Simple Harmonic Oscillator Model
(S.H.O.), which assumes that the nuclei of the molecule can be
represented by two masses connected by a massless spring obeying
Hook's law, as 1llustrated in the following diagram.

<« ! >, €<—>»
QA
’",O m,
”
< : »

Frank Houwing's Lecture Notes Web site!
www.anu.edu.au/Physics/houwing/LectureNotes/ Phys3034 MolSpec/MolSpec L2 OH.pdf



To determine the spectrum we again adopt the convention that E' > E"
which means that v' > v" for pure vibration.
Hence

vi=v'+1.

The spectral lines will therefore be given by

y=E_EVD _ G- Gy
hc hc
=G(V'"+1)-G(V") = a)(v"+§) = a)(v"+%)

= ... all lines are coincident.
........ consequence of assuming S.H.O.

In reality, however, the system 1s not and the vibrational lines are not
coincident.



Continuing to discuss the S.H.O. we shall consider the form of the
wavefunctions ¥, . Consider the following figure.

V@

\ S— — / v=6
v




The Anharmonic Oscillator

The simple harmonic oscillator (S.H.O.) that we have been using up to
now to describe the wvibrational motion of a molecule 1s an
approximation, which gives a good representation of the potential
energy curve near its minimum. However to give a better description,
which more closely follows the actual potential for more energetic
vibrations, it is necessary to add higher order terms, In fact, it is found
that a cubic potential is very good.

] Wir)

$.H.0: V=i kirr)?
... pood near minimum

actual potemial

Fd Higher order model
: 2 3
N V=f () - g (rrg)”

¥ -




If we substitute this higher order model into the wave equation
(Schrodinger's equation) and solve for the eigenvalues, we find that
the vibrational energy 1s given by a high order polynomial

. 1\ 2 1\ 3
E(v)=lco, (v + %) —hcw,x, (v + %) + hca)(,ye(v + %) F e,

In fact, because of this, a general polynomial is often simply assumed
and the coefficients are found experimentally by fitting methods.
More terms are included if higher accuracy 1s required. However, in
most cases, it is sufficient to truncate the polynomial for E(v) at the
cubic or even the quadratic terms. To express the energy in wave
numbers, we simply divide by /¢ to produce the vibrational energy
term:

, i~ 2 1\ 3
G(v)= E(V) , (v + %) — a)(,x()(v + %) + a)(,y()(v +%) +....

hc
where  v=0,1,2,..... and @, >> w,x, > 0,), .

also, unlike the S.H.O. , w,.C#V

OSC



Selection Rules for Vibrational Transitions allowed by the
Anharmonic Oscillator Model

We will not go into the analysis for deriving the selection rules.
However, the derivation will proceed along the same lines as for the
S.H.O. model except that the wavefunctions of the anharmonic model
will be used. Such a derivation will show that all vibrational
transitions are allowed, with

+2, 3, etc (selection rules for A.O.)

However, examination of the transition probabilities shows that the
Av ==+1] transition 1s most intense.




(v, v")y=1(0, 0) (5,0)

The wvalues of the wavenumbers v for the transitions with
Av =2.3,4,.... are approximately 2x,3x,4x,..... the value of v for the
Av =1 transition. Because of this, the transitions are often termed:

(1,0):" fundamental"; (2,0):"second harmonic"; (3,0):"third harmonic".

However, they are not true harmonics.



A few facts...

Continuous term spectra and dissociation

[f oscillator has more energy E than, hcD,, then r — o and molecule
dissociates. For £ > hcD, , system has excess energy (kinetic energy)
> () and not quantized.

after dissociation. .. (K.E)
V/he

A

atoms
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Franck-Condon Principle

Electronic transitions will connect the lowest
vibrational level of the ground electronic
state with several vibrational states of the
upper electronic state. The most probable
transition is the one having the best overlap
in the vibrational eigen functions.
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Energia vibracional:

1 1\ 2
El‘ib(l‘) = hve (1‘ + 3) — hvexe (1‘ + _)> .

La separacién entre estados vibracionales sucesi-

VOS,

AE,  Eyip(v+1) = Eyp(v
} v — tllb(l i }) ﬂblb(l) = I/e—l/eilTeQ('U‘I_]-)t
) 1

se reduce al aumentar v (Excepcién: algunas
moléculas con z. < 0).

Separacion nuclear efectiva:

1 < 1 > < ,.
: === /)= Vv
Ry, \R?

Constante rotacional efectiva:

o ( N 1) h2
Yy — De — (e U -_ = —_——
2 SWzyl?i

‘1?{"'/'7_; > .

1
R?
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Energia rotacional:
Erot = hByJJ(J+ 1) — hD. [J(J + 1))

La separacién entre estados rotacionales sucesivos,

AE; E, g+1—FEy.
h h

disminuye con J Ty v .

B.,2(J+1)—D.4(J+1)*

Energia de punto cero:

1

60 — ,_h»l/e -
2

1
1 hvexe + hYoo.

~
~Y

Importancia relativa: Generalmente v, > vex,
Be >> e >> De-



Constantes espectroscépicas en cm ™ °.

U. Ve Vele B. . D. R.
Hy X -'X% 0  4401.213  121.336  60.8530 3.0622 47.1x1073  0.74144
B—-'¥T  91700.0 1358.09 20.888  20.0154 1.1845 16.25x 1077 1.29282
Dy X —'XF 0  3115.50 61.82 30.4436 1.0786 11.41x107%  0.74152
OH X —-2T1I 0  3737.761 84.8813 18.9108 0.7242 1.938x 1072  0.96966
HF X 1'%t 0  4138.32 89.88 20.9557 0.798 2.151x10~% 0.916808
Ny ¢ X —' %% 0  2358.57 14.324 1.998241  0.017318 5.76x107%  1.097685
coO X-'x* 0  2169.81358 13.28831 1.93128087 0.01750441 6.12147x10~° 1.128323
NO X —*TI; o 0  1904.204 14.075 1.67195 0.0171 0.54x10=°% 1.15077
X — 3,5  119.82 1904.040 14.100 1.72016 0.0182 10.23x107%  1.15077
A =23t  43965.7 2374.31 10.106 1.9965 0.01915 5.4%x107°%  1.06434
Oy f X - %7 0  1580.193 11.981 1.4376766 0.01593 4.839x107% 1.20752
Fot X—-'3F 0 916.64 11.236 0.89019 0.013847 33x107°%  1.41193
ICl X —'%* 0 384.293 1.501 0.1141587 0.0005354  40.3x107°  2.320878
l, X -'%f 0 214.502 0.6147  0.037372  0.0001138  4.25x10™7  2.6663

t vey. s 0562 (Ds), —0.00226 (N>), 0.04747 (O5), —0.113 cm~ ! (F»).

o' =0 \/g Ejemplo:H,yD, o'=® \E =4401.213 /1.414 =3112.1 vs 3115.5 cm'!

Breakdown of the Bohr-Oppenheimer approximation



v=0—1

02
| 077 04 o0
D, — 2MuXe ! 3, — 120,x, | 5P, — 30D.x,
2, — 6V.x, 4y, — 20V,x,
g —»

Fig. 4.7 Positions of the band origins of the infrared absorption spectrum of a diatomic
molecule.



Espectro roto-vibracional: A.J # 0, v — v’: Para la transicién fundamental v : 0 — 1 tenemos:

Banda origen : Vor = Ve — 2UVeTe.

Rama P (AJ=—-1): vp(J) = vor —2Be(J+1)—ac(J—1)(J+1)+4D.(J+1)3,

Rama Q (AJ =0): vo(J) = vor —aeJ(J+1),

RamaR (AJ =+1): vr(J) = vor+2Be(J+1)—ae(J+1)(J+3)—4D(J+1)3,

Iy jvt gt = Tor(v = ") Ny o Iop(v — ') /5 (2] 4 1) e~/ I+DRB/KT
: - _ — — D 2 _
Separacién entre lineas RAMA P 1 Avp(J) = —2B.—ac(2] = 1) +4Dc(3J2 = 9] +7),
Rama R: Avg(J) = +2Bc — ae(2J+5)—4Dc(3J% —9.J+ 7).

o vp < vor < VR (V) = Vor pero no es visible).
o Avp(J)~ Avg(J) = 2B..
o J|l=vp|,vp T,Al/p(.]) l,AI/R(J) T.

e La rama P puede presentar cabeza de banda cuando Avg(J) =0~ 2B, — a.(2Jcp + 5). El
fendmeno es mas facil en moléculas ligeras: Jop =24 (HF y OH), 108 (CO) y 211 (ICl).

(© Victor Luaiia, 2002
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Fig. 4.9 Rotational fine structure of a vibration-rotation band of a diatomic molecule. Note
the decreasing spacing with increasing J in the R branch, and the increasing spacing with
increasing J in the P branch.

P branch | R branch

g —»

Fig. 4.10 Appearance of a vibration-rotation band of a diatomic molecule under low
resolution. '



ATMOS (SKYLAB) SOLAR SPECTRUM

_CO in the Sun
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All frequencies can be computed with a few constants and with a relative accuracy between a few 10-8to 4 10-10



ROTATIONAL CONSTANTS (Yij) USED FOR FREQUENCY PREDICTIONS, LINE INTENSITIES AND ENERGIES IN MADEX

Y10 (cm-1) = 2169.81272147 ERROR (lsigma) = .00000356

Y20 (cm-1) = -13.28791503 ERROR (lsigma) = .00000280

Y30 (cm-1) = 1.04230043E-02 ERROR (lsigma) = 8.71724663E-07

Y40 (cm-1) = 6.75125585E-05 ERROR (lsigma) = 1.20645180E-07

Y50 (cm-1) = 3.26953608E-07 ERROR (lsigma) = 8.56996098E-09

Y60 (cm-1) = -5.79731191E-09 ERROR (lsigma) = 3.26608992E-10 .
Y70 (cm-1) = -6.26610004E-10 ERROR (lsigma) = 6.34448969E-12 These constants a“OW to predlCt the
Y80 (cm-1) = 9.06043909E-12 ERROR (lsigma) = 4.92657662E-14 : H : H

Y90 (cm-1) = -6.17053672E-14 ERROR (lsigma) = .00000000 rotat'lonal and rowbratlonal lmes
Y0l (MHz) = 57898.34440307 ERROR (lsigma) = .00015568 - — .

Y1l (MHz) = -524.76175591 ERROR (lsigma) = .00041569 up to J—SO, V_40 Of'

Y21 (MHz) = 1.80115040E-02 ERROR (lsigma) = 2.45807930E-04 CO

Y31 (MHz) = -4.71867991E-05 ERROR (lsigma) = 4.77632641E-05

Y41 (MHz) = 8.66859871E-05 ERROR (lsigma) = 4.23503613E-06 13CO

Y51 (MHz) = -2.30684772E-06 ERROR (lsigma) = 1.86487796E-07

Y61 (MHz) = 4.56008373E-09 ERROR (lsigma) = 3.96223816E-09 14CO

Y71 (MHz) = -4.00605025E-10 ERROR (lsigma) = 3.23262843E-11

Y02 (MHz) = -.18351892 ERROR (lsigma) = 2.05966918E-07 C17O

Y12 (MHz) = 3.06017813E-05 ERROR (lsigma) = 3.10233614E-07

Y22 (MHz) = -5.00667407E-06 ERROR (lsigma) = 8.34577408E-08 C180

Y32 (MHz) = 7.70219531E-09 ERROR (lsigma) = 5.33917091E-09

Y42 (MHz) = -2.04206155E-09 ERROR (lsigma) = .00000000 13cl7o

Y52 (MHz) = 7.95573653E-11 ERROR (lsigma) = .00000000

Y03 (MHz) = 1.73912087E-07 ERROR (lsigma) = 2.10858800E-10 13C180

Y13 (MHz) = -4.78671372E-09 ERROR (lsigma) = 5.46158704E-11

Y23 (MHz) = -1.53877206E-11 ERROR (lsigma) = 9.29239351E-12 14C17O

Y33 (MHz) = 5.23188498E-13 ERROR (lsigma) = .00000000

Y43 (MHz) = -4.28843372E-14 ERROR (lsigma) = .00000000 14C180

Y04 (MHz) = 1.56388520E-13 ERROR (lsigma) = 8.32772613E-14

Y14 (MHz) = -2.15397911E-14 ERROR (lsigma) = .00000000

Y24 (MHz) = -1.18564210E-16 ERROR (lsigma) = .00000000

Y34 (MHz) = -4.36681631E-17 ERROR (lsigma) = .00000000 -7 :
Y44 (MHz) = 2.08681608E-18 ERROR (lsigma) = .00000000 Accuracy better than 10 and In most
Y05 (MHz) = -1.38717863E-18 ERROR (lsigma) = .00000000 : : :
Y15 EMHz; = -1.62968088E-19 ERROR Elsigma; = .00000000 Cases frequenC|eS predlcted Wlth
Y25 (MHz) = -2.75517128E-21 ERROR (lsigma) = .00000000 . . H -10 -9
Y35 (MHz) = 7.81937501E-23 ERROR (lsigma) = .00000000 relatlve accuracies as hlgh as 10 _10
Y06 (MHz) = -2.32787184E-23 ERROR (lsigma) = .00000000

Y16 (MHz) = -1.19013866E-24 ERROR (lsigma) = .00000000

Y26 (MHz) = -1.75689536E-25 ERROR (lsigma) = .00000000 CO J=1-O

Y36 (MHz) = 7.59714424E-27 ERROR (lsigma) = .00000000

Y07 (MHz) = -1.24275243E-28 ERROR (lsigma) = .00000000 —

Y17 (MHz) = -1.19610126E-29 ERROR (lsigma) = .00000000 V_11527120204i-0000046 MHZ
Y27 (MHz) = 5.06551541E-31 ERROR (lsigma) = .00000000

Av/v=4 1010



In polyatomic molecules the number of
vibrational modes can be large (HCN : three
modes, antisymmetrical stretching,
symmetrical stretching and bending




o4

v
bending

+—> +—>
symmetric stretching

+—>

a2

asymmetric stretching
vibrational motion

rotational motion

translational motion



Gonzalez-Alfonso & Cernicharo 1998 ! ot i
AN i
7000 | Fr/Feol | i
E 005 - I 1 ]
B r A 4
(®) - HCN HEN -
L | LS Le- V3~ UVp |
vi+RUs—Vg Votvg—BU]
6000 F T g
0.9 - _
ENERGY L HCN i
Vot g CoH
L = 2Hp i
DIAGRAM i o, A ]
OF HCN L il yz.lt V?’“Vs i
3~ Y4
0.85 |- CpHy Votltve—v .
5000 I ) | Satby—Bug
1CoH, | Vot Rr g trg—2uy
23+U5 CEHZ +1/1—V5 i
L VTV TV Vs
Lvot+2u+rg (?) S N T i
0‘8 I_ I 1 1 1 1 1 I 1 1 1 1 | 1
4000 25 3.5 4
28 10* ; r , .
HCN 313-215
3000 - N\ 26 10° — HON b2 .
| \ F(Iy) {
I sagofLILLLIEEELITITTEETTY |
2000 + CH, 203+vi-213
210t LT [ 111 ||
r C.H, BL'g—v; & |':+2v§—vi+vé & 31/£—2)/g
ot vy ed-u)
210t L T e L o, 2fi-2? & avi-z? ]
1000 |- g e Vv
ST CH, v:+2vg—1{l+1'5
i 18104k CH, vi+vi—vy 411. L HC'®CH v & CH, vi+vg'—v) [ |v'l } I U B ” { |
& vi+ari-v g C.H, v
i . & Zx»g—r'; ; | |
oL 13 135 14 145 15

M pan)



More on rotational spectroscopy...

* Diatomic or linear molecules are just a simple case (J)

 In general a molecule will have three principal axis
with moment of inertia |,, I, I.. Here we can distinguish:

Spherical tops: I,=lg=l. Example: Amonium ion NH,*

Symmetric tops: 1,=I5<I. (prolate) 1,<Ig=l. (oblate) (J,K)

Asymmetric tops: l,,lg,l. all different (Ex: H,0) (J,K,,K)

Unperturbed Centrifugal Distortion

Hamiltonian . pen s \
+H I+ H N+ H o BT+ H IS

2 %2 42 : ) LR
AT? + BJ? v+ Al R T TN |
Sextic

The description of energy levels needs 3 rotational quantum
numbers: J (main rotation quantum number ), K, (projection of J
on the symmetry axis of the limiting oblate symmetric top), K.
(same projection but for the limiting prolate symmetric top)




More on rotational spectroscopy...

 Electric dipole moment does not follow a principal
axis of inertia (example HDO, p_=0.65 u,=1.73; for
H20 p,=1.85).

* There is an internal specular symmetry (Ex: NH,)
* There is an internal symmetry by rotation (CH,CCH)

* There is a nuclear spin (small degeneracy breakdown)

* There is a magnetic dipole moment and an external
magnetic field.

* There are degenerate vibrational modes (I-type doubling)




Generalizing the moment of inertia from Rigid Rotator to Polyatomic Molecules

It is helpful to consider the molecular moment of inertia projected on each of the three Cartesian
(xyz) axes. Written in this way, we see that the moment of inertia is actually a two-dimensional

vector, called a tensor, or the inertia tensor

where the individual elements are defined as

m, I.() j _)un) +(“ un)zJ

,'\.
I
M(

Il

j=l

m, I.(\ - un) +(“ .,LIH):J

~
[l
M'/.

1

J

\
M-/

./‘I_(y‘/' - yum )2 + (x_/ - xcm )2 J" Clnd

/

[, == 2 m|(x, =x,) (Y, = Vo)l ... with

[ =1

xy ottt

with the subscript ., representing the center of mass positions for the molecule.



The mathematics of classical rigid bodies tells us that the inertia tensor for molecules can
always be diagonalized so that the off-diagonal elements (e.g., /,,) are zero. The convention is
that the resulting diagonalized inertia tensor has the diagonal elements relabeled as /., = /4,
[‘:1- - [1;, and 1_—_— = [(' , Or

Thus, to represent molecular rotations for even the most asymmetric molecules, we need
consider only the three axes 4, B, and C that are mutually orthogonal along the x, y, and z
directions. Another convention is that for molecules, we always define the A axis to have the
smallest moment of inertia, and hence the highest rotation frequency, as /, </ </ .

Spherical rotors, (or spherical tops) are molecules for which 7, = Ip=1-. Examples of
spherical top molecules are methane (CH,), sulfur hexafluoride (SF¢), and carbon tetrachloride
(CCly).

Linear molecules have 7, = I3, and I = 0. Examples of linear rotors are all of the diatomic
molecules, plus carbon dioxide (CO,).



As shown below, water is also an asymmetric rotor.

The generalization of the rigid rotor to the three-dimensional case for an asymmetric rotor
requires that we consider the fact that the angular momentum squared operator J is now
represented as

Ji=J+J,+J;]



and consequently, the Hamiltonian operator for the asymmetric rotor is given by

[S%]

2

1:[= '].t + ]/2) + J('
21, 21, 2I,

There are in general three rotational energies, one for rotation about each of the three orthogonal
axes A, B, and C. Because of orthogonality, the rotational axes have separable rigid rotor
solutions, leading to energy eigenvalues

EJ) = WASTCL) x JUJ+1), Eg(J) = WAST ) x J(J+1), and Ec(J) = WASTCI) x JJ+1).

It is very important to kKeep track of units in spectroscopy. In rotational spectroscopy, the

. . . 9 - -1 -1 . . . -
energies may be reported in GHz (10" s7), orem™ (1 em™ =30 GHz). It is quite common to find
the rotational energies written in terms of the three rotational constants A, B, and C, given by

h_ B = —{7 cand C = f

A=——: ——
el , ¢l -l

. 1
where the units are wavenumbers (cm™ ).



Centrifugal Distorsion

Centrifugal stretching is treated as a perturbation on the eigenstates of the

rigid rotor. If 5, represents the Hamiltonian of the rigid rotor and #,
represents that of the distortional energy, the rotational Hamiltonian is

= H + H, - (6.9)

In Chapter 8 it is shown that the centrifugal distortional Hamiltonian has the
form

h4
Hy = D TusPuPsPrPs (6.10)

4
aflyd

where «, B, v, 6 represent the principal coordinate axes of the moments of iner-
tia and where each must be summed over all three coordinate axes. However,
in the first-order perturbation treatment, the terms with odd powers in any
angular momentum which occur in the sum average to zero. Furthermore, by
use of the angular momenta commutation rules and the fact that many of
the 7’s are equal, the Hamiltonian can be further simplified.



Centrifugal
force

HP = 2> riassPPF

— 4 ! 4 4 4 ¢
= Z [TxxxxPx + Tyyyypy + Tzzzsz + Txxyy

x (P2P,% + P,2P.2) + 7hur P2P.2 + PP,?)
+ T;yzz(P yZP = + P 22P yz)]



EL = (K| #P|JK)

Matrix Elements of P,2P,? in a Symmetric Rotor Representation®

(K|P34|K) = K* _

(K [P K) = 3[(P? — K22 + Hf O (D) + /-0 ()]

(KiP*K) = (K|P,% | K) .
(K|P°Py? + PP 2K) = F[(P% — K*)* — H{SA(0) /(1) +/-(0)f (1)}
(K|P,2P.2 + P,2P,2|K) = K2[P? — K?]

(K|P2P.2 + P2P%|K) = (K|P,2P.% + P.2P,2%|K)

(K|P,*|K £ 2) = ${2P? — K* — (K £ 2*H{/.(O) L (D}
(KIP K £ 2) = —(K|P*K £ 2)

(K|P,°P.> + P2P2|IK £ 2) = HK? + (K & 22H{f,L.(0)f L (D1
(K|P.’Py* + P,°P.%|K + 2) = —(K|P,2P,” + P.2P,°|K + 2)

(K|PAK £ 4) = {0 f (D)L f L3N
(K|PHK & 4) = (K|P,K £ 4)

(K|P,2P,2 + P2P 2K + 4) = -2(K|P 4K + 4)
PP=JJ+1); [f(D={P—K+HK+I!IxD]

EY = —h[D,J*(J + 1)? + DpJ(J + DK? + DeK*]



The energies of symmetric rotor are :

E; o = h[BIJ + 1)+ (4 — B)K2 — D,JJ + 1)?
— DJKJ(J+ I)KZ - DKK4]

and the frequencies for a transition J=>J+1 :

v =2B(J + 1) — 4D,(J + 1)® — 2D,;(J + 1K?

T d

- =2 = 23 - 34 J= 45

3 2,10 4, 3, 2,10

Fig. 6.2. Diagram indicating the general appearance of the rotational spectrum of a
symmetric-top molecule, The lines of different K for the same J transition are separated
by centrifugal distortion. This separation is extremely small compared with the separation
of the different J transitions.




Each molecule will have different excitation mechanisms depending on:

Its frequencies and rotational dipole(s) moment(s)

Its collisional rates with H,, He, H, e- (depending on the media)

Infrared pumping (depends on the media and the source structure and on the
dust effect on the IR photons). It depends also on the
vibrational dipole moments

Its molecular abundance (opacity effects, radiative trapping)

The spatial structure of the source

Chemical pumping (NH;, CH,;CN, ....)
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That’s all
Thank you very much for your
attention

The observation that in interstellar space only the very lowest rotational
levels of CH, CH™, and CN are populated is readily explained by the depopula-
tion of the higher levels by emission of the far infrared rotation spectrum (see
p. 4 1) and by the lack of excitation to these levels by collisions or radiation.
The intensity of the rotation spectrum of CN is much smaller than that of CH
or CH™ on account of the smaller dipole moment as well as the smaller frequency
[due to the factor »* in (I, 48)]. That is why lines from the second lowest level



